The goal of tidyVA is to provide simple features of Veterans Health Administration geographies. Data included are tidy data frames of VHA spatial data obtained from data.va.gov. Please note the site is no longer operational while VA establishes a new open data portal.
The benefit of simple features in R is that they allow for tidy spatial analysis.
The following included datasets are sf-tibbles of VHA geographies with a common CRS - EPSG: 4326.
Summarized descriptions from data.va.gov
county
: The county layer is the base geographic unit of the VISN-Market-Submarket-Sector-County hierarchy.
sector
: A sector is a cluster of geographically adjacent counties within a VA Submarket.
submarket
: Submarkets reflect a clustering of the enrolled population within a market and are an aggregation of Sectors.
market
: Each market is built from submarkets and represent an aggregated geographic area having sufficient population and geographic size to benefit from planning healthcare services. Markets cross state borders where necessary to keep the catchment area within the same market
visn
: VISNs are the upper echelon in the VHA hierarchy. VISN boundaries align with those of their constituent markets and can span across non-contiguous areas.
states
: Simple features of states and territories of the US (CRS - EPSG: 4326). Used for spatial joins and geometric manipulations.
VAloc
: Simple features (CRS - EPSG: 4326) of all VA facilities - from all Administrations: Veterans Health Administration, Veterans Benefits Administration, and National Cemetery Administration
This is a basic example which shows you how to solve a common problem:
VHA Submarkets are an aggregation of Sectors; and Sectors are comprised of one or more counties. Since each VISN is defined in a hierarchy, this dataset contains attributes of all echelons above submarket - that is, Market and VISN.
Although accurate, this output is not very easy to work with. Since this is in tidy format, though, we can easily filter and manipulate the data.
glimpse(submarket)
#> Observations: 153
#> Variables: 6
#> $ VISN <chr> "01", "01", "01", "01", "02", "02", "02", "02", "02", "0...
#> $ MARKET <chr> "01-a", "01-b", "01-c", "01-d", "02-a", "02-b", "02-d", ...
#> $ SUBMARKET <chr> "01-a-9", "01-b-9", "01-c-9", "01-d-9", "02-a-9", "02-b-...
#> $ Shape_Leng <dbl> 38.391428, 81.160361, 13.413957, 14.839457, 13.081583, 1...
#> $ Shape_Area <dbl> 1.78751288, 9.66806953, 5.47709016, 2.19550641, 4.907932...
#> $ geometry <MULTIPOLYGON [°]> MULTIPOLYGON (((-71.56974 4..., MULTIPOLYGO...
#> Simple feature collection with 10 features and 5 fields
#> geometry type: MULTIPOLYGON
#> dimension: XY
#> bbox: xmin: -79.13745 ymin: 39.50577 xmax: -71.85615 ymax: 45.01585
#> epsg (SRID): 4326
#> proj4string: +proj=longlat +datum=WGS84 +no_defs
#> # A tibble: 10 x 6
#> VISN MARKET SUBMARKET Shape_Leng Shape_Area geometry
#> * <chr> <chr> <chr> <dbl> <dbl> <MULTIPOLYGON [°]>
#> 1 02 02-a 02-a-9 13.1 4.91 (((-73.34312 45.01084, -73.3446~
#> 2 02 02-b 02-b-9 18.8 4.01 (((-76.18704 43.66566, -76.1869~
#> 3 02 02-d 02-d-9 6.58 1.25 (((-78.90518 42.93351, -78.9050~
#> 4 02 02-e 02-e-1 2.49 0.191 (((-77.97621 43.36874, -77.9753~
#> 5 02 02-e 02-e-2 6.01 0.656 (((-76.94668 43.25894, -76.9463~
#> 6 02 02-f 02-f-2 6.14 1.63 (((-76.94756 42.76441, -76.9477~
#> 7 02 02-g 02-g-9 25.2 0.335 (((-73.72961 40.59637, -73.7289~
#> 8 02 02-h 02-h-1 9.51 0.999 (((-73.89687 40.79565, -73.8970~
#> 9 02 02-h 02-h-3 5.92 0.0717 (((-74.20241 40.57956, -74.2023~
#> 10 02 02-i 02-i-9 17.4 1.24 (((-74.30019 39.50628, -74.3048~
shift_geo
shift_geo()
will project and re-position Alaska and Hawaii, When supplied a complete dataset (from VHA Geographies).
theme_va()
theme_va()
is a copy of theme_ipsum
from hrbrthemes. It’s a ggplot theme with some color and plotting modifications to the defaults.
sail_tidy
sail_tidy
will return a tibble of VA SAIL metrics when provided a data table url.
sail_tidy("https://www.va.gov/QUALITYOFCARE/SAIL_FY19_Q1/SAIL-5_clarksburg_fy19q1.xlsx")
#> # A tibble: 63 x 8
#> label measure_unit preferred_direc~ best_10_percent ntiles_10_50_90 site
#> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 Acut~ O/E <U+2193> 0.469 0.469 - 0.857 ~ Clar~
#> 2 Acut~ O/E <U+2193> 0.740 0.740 - 0.952 ~ Clar~
#> 3 AMI ~ % <U+2193> 7.219 7.219 - 7.666 ~ Clar~
#> 4 CHF ~ % <U+2193> 5.676 5.676 - 6.820 ~ Clar~
#> 5 Pneu~ % <U+2193> 7.820 7.820 - 9.026 ~ Clar~
#> 6 COPD~ % <U+2193> 4.402 4.402 - 5.942 ~ Clar~
#> 7 Stro~ % <U+2193> 5.134 5.134 - 5.933 ~ Clar~
#> 8 In-h~ O/E <U+2193> 0.000 0.000 - 0.834 ~ Clar~
#> 9 Cath~ inf/1k devi~ <U+2193> 0.000 0.000 - 0.446 ~ Clar~
#> 10 Cent~ inf/1k devi~ <U+2193> 0.000 0.000 - 0.395 ~ Clar~
#> # ... with 53 more rows, and 2 more variables: value <chr>, measure <chr>